Software matemático

Razonamiento, comunicación y representación. Completa el siguiente puzle numérico en Polypad

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto una actividad para trabajar el razonamiento que puedes usar tal cual en tu aula de Matemáticas. Parte de una representación visual muy sencilla (dos imágenes con números, una completa y otro no) y se apoya en Polypad para que el alumnado pueda probar, representar y luego comunicar el proceso seguido.

Observa con atención la imagen de la izquierda. A partir de ella, averigua los valores de a, b y c.
Completa todos los valores que faltan, justificando de manera razonada cada uno de ellos.

Esta actividad:

  • Desarrolla el razonamiento matemático porque el alumnado debe descubrir un patrón a partir de un caso ya resuelto.

  • Activa la justificación, pero no de manera aislada, sino unida a larepresentación, que es como se plantea en el currículo de matemáticas LOMLOE, comunicación y representación.

  • Permite trabajar con distintos registros: visual (diagrama), numérico (operaciones), simbólico (letras a, b, c), y verbal (explicar a un compañero).

  • Integra el uso de una herramienta digital manipulativa (Polypad).

  • Se puede convertir fácilmente en una Tarea de Suelo Bajo y Techo Alto (SBTA): todos pueden empezar observando, pero se puede extender a generalizar la regla otras ternas de números.

    Generalización:

    • ¿Qué ocurriría si el número superior fuera 600 y el inferior 20? ¿Podrías seguir el mismo razonamiento?
    • ¿Si el número superior es 625 y el inferior es 20? ¿Qué ocurre?
    • ¿Si el número superior fuera 450, cuál debería ser el valor del inferior?
    • ¡Pon a prueba tu creatividad! Diseña una figura con los números superior e inferior rellenos y tú compañero/a deberá averiguar el valor de todas las casillas e indicar el valor de a, b y c.
    • ¿Qué relación/es algebraica/s debe existir entre a, b y c?

Canva Polypad

Polypad – Puzle numérico – Razonamiento – Analogía

Conexión curricular LOMLOE (RD 217/2022)

Esta actividad conecta directamente con varias competencias específicas del currículo de Matemáticas de ESO (RD 217/2022):

  • 1. Interpretar, modelizar y resolver problemas (RESPRO): el alumnado parte de una situación no rutinaria y aplica estrategias como búsqueda de patrones, analogía con un ejemplo ya resuelto, ensayo y error y descomposición del problema.

  • 2. Analizar las soluciones (RESPRO): una vez encontrada la terna (a, b, c), se comprueba con el modelo original si realmente da 150 arriba y 15 abajo.

  • 3. Formular y comprobar conjeturas (RAZPRU): el paso clave es “creo que arriba se ….. y abajo …..”; después se contrasta.

  • 7. Representar con distintas tecnologías (COMREP): el uso de Polypad permite visualizar la estructura, añadir etiquetas,…

  • 8. Comunicar argumentos matemáticos (COMREP): se pide al alumnado que explique, por escrito u oralmente, por qué ha elegido b=…, cómo ha deducido a y c, y por qué la solución es válida. Aquí la justificación va unida explícitamente a comunicación y representación, como señala el currículo.

  • 9-10. Dimensión socioemocional (SOCAFE): al tratarse de un reto con cierta exploración, se fomenta la perseverancia, la aceptación del error y el trabajo cooperativo. 

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Pensamiento computacional e inteligencia artificial. Cuadernillo del Día Escolar de las Matemáticas 2026 (#DEM2026) – FESPM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Día Escolar de las Matemáticas 2026: Pensamiento Computacional e Inteligencia Artificial (PCeIA)

Como cada año, el 12 de mayo de 2026 será un día de celebración para la comunidad matemática española. Promovido por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), celebraremos un año más el Día Escolar de las Matemáticas (DEM).

En esta entrada tengo el gusto de anunciar que este año he sido el encargado de elaborar el cuadernillo oficial del Día Escolar de las Matemáticas 2026, editado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), dedicado a un tema apasionante y de plena actualidad: el Pensamiento Computacional (PC) y la Inteligencia Artificial (IA).

Agradezco sinceramente a la FESPM y a su Secretaría de actividades con alumnos, encargada de coordinar el DEM, la confianza depositada en mí para elaborar este material, que pretende acercar a las aulas estas dos ideas clave del presente y del futuro educativo. 

No se trata de formar programadores, sino de usar estas formas de pensar para aprender matemáticas con más sentido, creatividad y significado.

Matemáticas que piensan

Aprender matemáticas es mucho más que hacer operaciones. Es una forma de mirar el mundo, de pensar con lógica y de buscar soluciones.

Vivimos rodeados de datos, algoritmos y máquinas que aprenden: desde los asistentes virtuales que responden a nuestras preguntas hasta las calculadoras inteligentes que dibujan gráficos y corrigen errores. Detrás de todo esto hay matemáticas que analizan, modelan y predicen. Matemáticas que piensan.

El cuadernillo parte de una idea sencilla pero potente: entender cómo pensamos cuando resolvemos problemas para comprender también cómo aprenden las máquinas.

Así, el pensamiento computacional nos enseña a organizar ideas, dividir problemas complejos en partes más sencillas, identificar patrones y crear algoritmos, mientras que la inteligencia artificial (IA) nos invita a reflexionar sobre cómo los sistemas pueden aprender, mejorar y tomar decisiones, siempre desde una mirada humana y ética.

Un modelo para crear, pensar y compartir

El material se apoya en un modelo que une tres ideas fundamentales:

1️⃣ Resolver un problema que motive y haga pensar.

2️⃣ Usar el pensamiento computacional para organizar y buscar soluciones.

3️⃣ Compartir y dialogar en un Círculo Matemático Computacional (CMC), aprendiendo en equipo y desarrollando la competencia comunicativa.

Este enfoque no solo mejora las habilidades matemáticas, sino también la capacidad de explicar, razonar, colaborar y pensar críticamente, integrando la tecnología de manera reflexiva.

En el cuadernillo encontraréis actividades, retos y juegos diseñados para observar, preguntar, probar, representar y decidir, empleando herramientas digitales como LearningML, Scratch y distintos simuladores.

Matemáticas con sentido y humanidad

Este trabajo se enmarca en una línea de investigación-acción que vengo desarrollando desde hace más de una década en torno al pensamiento computacional como metodología para aprender matemáticas con sentido y, desde hace varios años, en el diseño de un marco sostenible de aprendizaje, evaluación y uso didáctico y ético de la inteligencia artificial en contextos educativos.

Ambos ámbitos confluyen en una misma idea: poner la tecnología al servicio del pensamiento y del desarrollo humano, y no al revés. Esa es la esencia de proyectos como este u otros como LingMáTICas, donde lenguaje, matemáticas y tecnología se unen para fortalecer la competencia comunicativa y el razonamiento matemático en entornos digitales.

Porque las matemáticas que piensan no buscan solo respuestas correctas: enseñan a razonar bien, comunicar con claridad y actuar con responsabilidad. Y hoy, aprender matemáticas también significa aprender a convivir con las máquinas… sin dejar de ser humanos.

Descarga el cuadernillo completo

El cuadernillo se puede descargar aquí, y animamos a todo el profesorado a verlo y difundirlo. Espero que os guste y que le saquéis mucho partido en el aula con vuestros alumnos.

Como es costumbre, entorno al 12 de mayo el autor del cuadernillo dará una conferencia del tema, de la cual ya pondremos más datos cuando se aproxime.

FESPM – PCeIA – DEM 2026

Cuadernillo DEM 2026

 

DEM2026-PCeIA
DEM_26_PC_e_IA-01
DEM_26_PC_e_IA-02
DEM_26_PC_e_IA-03
DEM_26_PC_e_IA-04
« de 7 »

Cuadernillo DEM 2026

Día Escolar de las Matemáticas en la web de la FESPM y enlaces a cuadernillos desde el año 2000

Día Escolar de las Matemáticas

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Desarrollo del sentido espacial, y de la medida. Tarea de Suelo Bajo y Techo Alto (SBTA), a partir de interactiva manipulativa con Polypad

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto una sencilla actividad interactiva de clasificación de polígonos, a través de sus representaciones.

Arrastra cada polígono a su casilla: Triángulo, Cuadrilátero, Pentágono o Hexágono.

Esta actividad:

  • Desarrolla el sentido espacial y geométrico, al pedir a los alumnos que distingan polígonos según sus lados y vértices.

  • Favorece la observación y la clasificación visual, habilidades básicas del pensamiento geométrico.

  • Potencia la expresión oral y la argumentación cuando los alumnos verbalizan sus decisiones.

  • Integra el uso de una herramienta digital manipulativa (Polypad).

  • Esta sencilla actividad puede dar pie, posteriormente, a hablar de aspectos como la concavidad y convexidad, intentar generar polígonos regulares correspondientes a cada una de ellas con área similar,… deducir que la suma de los ángulos interiores es igual a S=180·(n-2), siendo n el número de lados a partir de la triangulación de las figuras (para facilitar esto pueden hacerlo con los polígonos regulares, luego irregulares convexos, …). De esta manera estaríamos convirtiendo la misma en una Tarea de tipo Suelo Bajo y Techo Alto.

Espero sea de utilidad para vuestro trabajo a pie de aula y para acompañar a vuestros aprendices en el desarrollo del sentido espacial y el de la medida (ángulos, área,…).

Canva Polypad

 

 

Polypad – Identificar polígonos

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Inteligencia Artificial de Claude para docentes. Simulador resolución de triángulos rectángulos elaborado con Claude · IA de Anthropic

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los conceptos trigonométricos y la resolución de triángulos representan un pilar fundamental en el último curso de secundaria y bachillerato. Sin embargo, estos conceptos suelen generar dificultades de comprensión para muchos alumnos debido a su naturaleza abstracta. 

El uso de pequeñas calculadoras y artefactos digitales, como los applets interactivos o los simuladores ofrecen una interactividad y ayudan a facilitar a la comprensión a través de la representación visual, obteniendo además retroalimentación inmediata.

Apoyándome en Claude, la inteligencia artificial de Anthropic, he elaborado un simulador para mis alumnos de 4º de ESO, el cual comparto en esta entrada.

Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto un vídeo para trabajar saberes básicos relacionados con el sentido de la medida y el sentido espacial en Matemáticas B de 4º de ESO, aunque también de aplicación en 1º de Bachillerato.

B. Sentido de la medida.

1. Medición.

− Razones trigonométricas de un ángulo agudo y sus relaciones: aplicación a la resolución de problemas.

 

C. Sentido espacial.

1. Figuras geométricas de dos y tres dimensiones.

− Propiedades geométricas de objetos matemáticos y de la vida cotidiana: investigación con programas de geometría dinámica.

4. Visualización, razonamiento y modelización geométrica.

− Modelos geométricos: representación y explicación de relaciones numéricas y algebraicas en situaciones diversas.

− Modelización de elementos geométricos con herramientas tecnológicas como programas de geometría dinámica, realidad aumentada….

− Elaboración y comprobación de conjeturas sobre propiedades geométricas mediante programas de geometría dinámica u otras herramientas.

En esta ocasión vamos a presentar un simulador para resolver triángulos rectángulos. Os dejo a continuación enlace al mismo y un pequeño vídeo explicativo mostrando su uso. Espero que os guste y os resulte de utilidad para vuestras clases. Estaré encantado de leer tus comentarios aquí en el blog, en Youtube o en otras redes sociales.

Características del simulador de triángulos rectángulos y fundamento didáctico 

El simulador presenta las siguientes funcionalidades:

  • Interfaz intuitiva para introducir al menos dos valores conocidos del triángulo.
  • Cálculo automático de todos los elementos restantes del triángulo rectángulo.
  • Visualización dinámica que se actualiza según los datos introducidos.
  • Representación gráfica clara con etiquetas de ángulos y longitudes.
  • Información complementaria sobre definiciones geométricas relevantes.
  • Aplicación práctica del Teorema de Pitágoras y relaciones trigonométricas.

Simulador resolución de triángulos rectángulos elaborado con Claude · IA de Anthropic

Pulsa en la imagen o aquí para acceder y usar el simulador 

Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.

Seguiré informando de los avances 🙂

Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa, en este caso de Claude, así como en los otros de ChatGPT,…

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo: Problemas de ecuaciones de primer grado con una incógnita · Diagrama de cinta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un vídeo mostrando el proceso de resolución de un problema en el que usamos una ecuación de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como el diagrama de cinta.

Vídeo explicativo

Aprovecho la ocasión para compartir una entrada anterior sobre este recurso. 

Diagramas de cinta y ecuaciones asociadas. Sentido algebraico. Desmos

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo y applet GeoGebra. Producto de binomios algebraicos · Representación usando un modelo de área

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto vídeo y applet interactivo de GeoGebra, diseñado para facilitar que los alumnos comprendan el producto de binomios algebraicos mediante un modelo de área. Este recurso permite construir monomios y binomios, y explorar su producto de forma visual e intuitiva.

El modelo de área ofrece una representación gráfica que ayuda a los estudiantes a visualizar cómo se combinan los términos al multiplicar binomios, facilitando así la comprensión de las propiedades algebraicas involucradas.

Los alumnos pueden interactuar con los deslizadores del applet modificando los valores de los coeficientes para construir diferentes binomios y observar en tiempo real cómo se forman los productos correspondientes. Además, el recurso se plantea preguntas abiertas que invitan a reflexionar sobre la relación entre las partes del modelo de área y el producto de los binomios, fomentando el pensamiento crítico y la autoevaluación.​

Con un diseño limpio y claro, una de las principales ventajas de este recurso es que permite a los alumnos experimentar de forma lúdica y aprender sin temor a cometer errores, ya que pueden probar diferentes estrategias y recibir retroalimentación inmediata. Esto enriquece su razonamiento matemático y refuerza su confianza en la resolución de problemas.​

Este recurso es muy útil para enseñar y aprender el producto de binomios algebraicos de forma interactiva y atractiva.

Os animo a usarlo, tanto a profesores como a alumnos y familias, aprovechando las oportunidades que ofrece para reforzar el aprendizaje del álgebra.

Vídeo. Producto de binomios algebraicos – Representación usando un modelo de área

Enlace al vídeo en Youtube. Canal MatemáTICas: 1,1,2,3,5,8,13,…

Applet Geogebra. Producto de binomios algebraicos – Representación usando un modelo de área

Enlace a la actividad en geogebra.org

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo: Problemas de ecuaciones de primer grado con una incógnita · Balanza

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un vídeo mostrando el proceso de resolución de un problema en el que usamos una ecuación de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como la balanza.

Vídeo explicativo

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Artículo en Revista Uno de Graó · LingMáTICas. Estrategias de comunicación para fomentar el razonamiento matemático y la resolución de problemas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Queridos amigos, asomo por aquí para compartir una buena noticia. Hace unos días recibí el nº 106 de la revista Uno de GRAÓ, especializada en Didáctica de las Matemáticas desde 1994, en el cual se incluye uno de mis últimos trabajos.
 
Concretamente se trata un artículo que lleva por título: «LingMáTICas. Estrategias de comunicación para fomentar el razonamiento matemático y la resolución de problemas» (pp. 44-53), estrechamente relacionado con la propuesta metodológica que vengo desarrollando en el aula desde hace casi dos décadas.
 

LingMáTICas. Estrategias de comunicación para fomentar el razonamiento matemático y la resolución de problemas

Este artículo presenta LingMáTICas, una metodología educativa desarrollada por Luis Miguel Iglesias que integra la competencia lingüística en el aula de matemáticas con el apoyo de las TIC. En este marco plantea una propuesta para su implantación en el aula que promueve el discurso y el diálogo como herramientas clave para mejorar la comunicación, el razonamiento matemático y fomentar un ambiente colaborativo de aprendizaje. LingMáTICas y la citada propuesta se alinean con las competencias específicas del currículo LOMLOE, facilitando la resolución de problemas, la argumentación y la representación de ideas matemáticas. A través de ejemplos de preguntas categorizadas, el artículo ilustra cómo fomentar la reflexión, la metacognición y la interacción productiva en el aula. El corolario final, a modo de llamada ala acción, invita a los profesores a implementar LingMáTICas, resaltando su eficacia en la enseñanza inclusiva y su capacidad para mejorar la comprensión matemática a través del lenguaje.

El pase de diapositivas requiere JavaScript.

 

Este tipo de noticias, recargan el tanque de combustible emocional y animan a seguir…
 

Sobre Uno 

Uno es una revista especializada en la didáctica de las matemáticas, publicada por la editorial Graó. Su objetivo principal es contribuir al desarrollo profesional del profesorado de matemáticas, ofreciendo contenidos teóricos y prácticos que faciliten el trabajo diario en el aula. La revista sirve como un espacio para la autoformación y el intercambio de propuestas didácticas, permitiendo trasladar ideas educativas innovadoras a la práctica escolar. En sus páginas, se pueden encontrar contenidos específicos sobre matemáticas desde una perspectiva interdisciplinaria y globalizadora, así como propuestas basadas en metodologías innovadoras como STEAM o gamificación. También aborda temas como la educación matemática y el desarrollo sostenible, juegos matemáticos y la evaluación de la competencia matemática.

Uno está dirigida al profesorado de matemáticas de todas las etapas educativas, especialmente de educación secundaria y bachillerato, así como a estudiantes del Máster de Secundaria, el grado de Magisterio y el grado de Pedagogía. Además, es de interés para centros de formación del profesorado y bancos de recursos didácticos, y para todas aquellas personas que desean descubrir propuestas y recursos matemáticos innovadores.

Acerca de LingMáTICas

Los lectores de este blog conocen bien mi predilección por vincular lengua y matemáticas. Ello me llevó hace más de una década a bautizarla. Es decir, a buscar un término, un palabro, con el que poder categorizarlas. Le llamé LingMáTICas.

Así, definí LingMáTICas como el conjunto de propuestas didácticas, contextos de aprendizaje, encaminados a fortalecer la competencia lingüística, en todos sus ámbitos, desde el aula de matemáticas, con ayuda de la tecnología (TIC).

Definición de LingMáTICas. Luis M. Iglesias

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Juego de algebra pictórica para promover el razonamiento matemático, con Geogebra. Sistemas de ecuaciones 3×3

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Comparto este applet interactivo elaborado con GeoGebra, para introducir a los alumnos en la resolución de sistemas de ecuaciones lineales con tres incógnitas mediante puzles lógicos. Este recurso facilita la comprensión de estos sistemas de forma visual e intuitiva, a partir de representaciones pictóricas, promoviendo el razonamiento matemático.

Su uso es sencillo: los alumnos pueden interactuar con los elementos del applet para encontrar las soluciones que satisfacen todas las ecuaciones del sistema. Además, el applet permite generar múltiples actividades de forma aleatoria, ofreciendo una variedad ilimitada de ejercicios para reforzar el aprendizaje.

Con un diseño limpio y claro, permite colocarlo a pantalla completa pulsando el cuadrado con borde discontinuo ubicado en la esquina inferior derecha.

Este recurso es de gran utilidad para enseñar y aprender la resolución de sistemas de ecuaciones lineales con tres incógnitas de forma interactiva y atractiva. Una de las principales ventajas de este juego es que permite a los alumnos experimentar de forma lúdica y aprender sin temor a cometer errores. Los alumnos pueden probar diferentes estrategias y recibir retroalimentación inmediata. Esto enriquece su razonamiento matemático y refuerza su confianza en la resolución de problemas.

Juego de algebra pictórica. Sistemas de ecuaciones 3×3

 

Enlace a la actividad en geogebra.org

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Resolución ecuaciones primer grado (2 pasos – Tipo: ax + b = c) · Balanza · GeoGebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un vídeo mostrando el proceso de resolución ecuaciones de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como la balanza, con un applet interactivo realizado con Geogebra.

Con él se pretende mostrar al alumnado el proceso de resolución de ecuaciones de primer grado de dos pasos (del tipo ax + b = c). En el vídeo se muestra la interacción con el applet en varios ejemplos.

Vídeo explicativo

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com