Enseñanza de las Matemáticas

Resolución ecuaciones primer grado (2 pasos – Tipo: ax + b = c) · Balanza · GeoGebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un vídeo mostrando el proceso de resolución ecuaciones de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como la balanza, con un applet interactivo realizado con Geogebra.

Con él se pretende mostrar al alumnado el proceso de resolución de ecuaciones de primer grado de dos pasos (del tipo ax + b = c). En el vídeo se muestra la interacción con el applet en varios ejemplos.

Vídeo explicativo

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Transformemos juntos nuestras concepciones docentes sobre la resolución de problemas matemáticos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La transformación de nuestras concepciones como docentes es una tarea continua y esencial para mejorar la calidad educativa en el aula. Nuestras creencias y prácticas impactan directamente en cómo nuestros alumnos aprenden matemáticas y perciben su utilidad.

En el nuevo marco normativo, autonómico andaluz y estatal, derivado de la implantación de la LOMLOE, la resolución de problemas se posiciona como una herramienta metodológica clave, no solo para enseñar contenidos, sino también para desarrollar el razonamiento, la comunicación y la autonomía de nuestros alumnos.

Durante mi intervención en las Jornadas para el Impulso del Razonamiento Matemático en Andalucía, celebradas en Málaga y Córdoba hace un par de semanas, reflexionamos, entre otros aspectos, sobre cómo nuestras concepciones sobre los problemas pueden influir sobre la manera en qué los enseñamos, qué tipo de problemas enseñamos y cómo/qué aprenden nuestros alumnos.

El nuevo currículo de Matemáticas derivado de la implantación de la LOMLOE tiene como líneas principales en la definición de las competencias específicas de matemáticas la resolución de problemas y las destrezas socioafectivas. En la introducción de la materia se recoge literalmente:

La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.

Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.

En este nuevo paradigma curricular, reforzado aún más si cabe en Andalucía con las Instrucciones de Razonamiento Matemático (18 junio 2024), se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como concepciones docentes sobre la resolución de problemas matemáticos.

Este artículo surge de los comentarios positivos que me han trasladado, por diferentes vías y redes sociales, muchos compañeros y compañeras de diferentes colegios e institutos de la geografía andaluza que acudieron a alguna de las jornadas o que han visto las grabaciones de las mismas, así como del interés común mostrado por la resolución de problemas y las concepciones que tenemos sobre ellas. Me reitero en mi opinión, como profesor de matemáticas e investigador en didáctica de la matemática, que este aspecto es crucial porque las concepciones afectan directamente tanto al proceso de enseñanza como al aprendizaje de nuestros alumnos.

Esta entrada en «el sitio de mi recreo», que no es otro que este blog de Matemáticas, no pretende ser más que una invitación a reflexionar, a compartir estrategias y a avanzar hacia una enseñanza más centrada en la resolución de problemas como eje vertebrador del aprendizaje matemático.

Ahora bien, como en todo proceso de transformación, debemos comenzar con una mirada instrospectiva, autocrítica y abierta al cambio, pilares básicos para construir una práctica docente más reflexiva, inclusiva y eficaz. 

A continuación planteo y ofrezco algunas respuestas y reflexiones que espero sean de utilidad para que ¡¡sigamos avanzando juntos!!

Ya me contarás tu opinión. Me interesa y mucho. 

Elaboración propia con DALL-E

PREGUNTAS, RESPUESTAS Y REFLEXIONES SOBRE LAS CONCEPCIONES DEL PROFESORADO SOBRE LA RESOLUCIÓN DE PROBLEMAS 

1. ¿Por qué es importante estudiar las concepciones del profesorado sobre la resolución de problemas?

Es crucial porque estas concepciones determinan cómo enseñamos y cómo los alumnos aprenden. Creencias erróneas, a menudo relacionadas con una formación deficiente, pueden limitar el uso de estrategias efectivas y perpetuar prácticas poco centradas en el desarrollo del pensamiento matemático.

2. ¿Qué tipo de concepciones erróneas sobre la resolución de problemas se detectan?

Actualmente, se identifican los siguientes problemas comunes:

  • Expectativas sobre los alumnos. Subestimación de las capacidades de los alumnos para resolver problemas.
  • Gestión del aula. Dedicamos poco tiempo a la resolución de problemas, priorizando algoritmos y cálculo mecánico.
  • Diversidad cultural. La diversidad, especialmente las dificultades lingüísticas, es vista como una barrera en lugar de una oportunidad.
  • Estrategias matemáticas. Desconocemos y no enseñamos de manera explícita estrategias heurísticas, modelización o aspectos del pensamiento computacional como metodología de resolución de problemas.
  • Comunicación. Aunque reconocemos su importancia, no fomentamos que los alumnos expliquen sus procesos; ni oralmente ni por escrito.
  • Causas de las dificultades. A menudo atribuimos las dificultades a factores externos, en lugar de reflexionar sobre la metodología. 
  • Relevancia del proceso. Consideramos la resolución de problemas como secundaria, sin priorizar el desarrollo de habilidades matemáticas profundas.

3. ¿Qué factores favorecen la transformación de concepciones erróneas?

Los siguientes elementos resultan fundamentales para este proceso de transformación:

  • Toma de conciencia. Observar cómo nuestros alumnos resuelven problemas con éxito y emplean estrategias diversas.
  • Reflexión sistemática y continuada. Revisar y autoevaluar nuestras prácticas docentes.
  • Contraste de metodologías. Experimentar nuevas formas de trabajar, uso de distintas estrategias de resolución de problemas, modelización, investigación guiada, trabajo por proyectos, aprendizaje cooperativo,…

4. ¿Cómo influye la diversidad cultural en la resolución de problemas?

Aunque puede ser un reto, la diversidad cultural presente en nuestras aulas y en nuestros centros educativos es una riqueza que, bien gestionada, favorece el aprendizaje.

Las estrategias cooperativas, el trabajo en equipo en grupos heterogéneos y mixtos, la aceptación de la crítica razonada, el fomento de la perseverancia y una cultura de aprendizaje a partir del error, ayudan a superar barreras lingüísticas y promueven el intercambio de ideas desde diferentes perspectivas.

5. ¿Qué papel desempeña la comunicación en la enseñanza de la resolución de problemas?

Como se puede ver en diversos ejemplos en la presentación que usé, este es un aspecto fundamental y muy presente en mi aula, ya que considero que la comunicación es fundamental para que nuestros alumnos verbalicen sus ideas, compartan estrategias y construyan conocimiento colectivo.

Es de vital importancia dedicar tiempo para fomentar el diálogo y el debate matemático en el aula. 

6. ¿Qué estrategias didácticas mejoran la gestión del aula durante la resolución de problemas?

Entre las más efectivas destacan:

  • Asignar tiempo suficiente a la resolución de problemas.
  • Organizar el trabajo en pequeños grupos.
  • Proporcionar materiales manipulativos.
  • Enseñar estrategias específicas de resolución.
  • Fomentar el debate y la exposición de ideas.

7. ¿Es posible cambiar las concepciones del profesorado sobre la relevancia de la resolución de problemas?

Sí, es posible. Mostrar cómo la resolución de problemas introduce conceptos nuevos, desarrolla el pensamiento matemático y beneficia a nuestros alumnos puede transformar nuestra percepción y darle la importancia que merece.

Compartir nuestras prácticas de aula, en entornos presenciales (departamento, área, grupos de trabajo, jornadas, congresos,…) o virtuales (a través de blogs, redes sociales,…) es una buena opción. Doy fe de ello.

8. ¿Qué se necesita, que aspectos so para lograr una transformación de las concepciones?

Es imprescindible:

  • Espacios para reflexionar y planificar en equipo.
  • Formación continua en didáctica de la matemática.
  • Formación en gestión y dinámicas del aula, así como en aspectos cognitivos y no cognitivos del aprendizaje.
  • Un cambio en la cultura escolar que valore el análisis de la práctica docente y el desarrollo profesional.

FUENTES

  • Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria.
  • Orden de 30 de mayo de 2023, por la que se desarrolla el currículo correspondiente a la etapa de Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, se regulan determinados aspectos de la atención a la diversidad y a las diferencias individuales, se establece la ordenación de la evaluación del proceso de aprendizaje del alumnado y se determina el proceso de tránsito entre las diferentes etapas educativas.
  • Instrucciones sobre las medidas para el fomento del Razonamiento Matemático a través del planteamiento y la resolución de retos y problemas en Educación Infantil, Educación Primaria y Educación Secundaria Obligatoria en Andalucía
  • Pastells, A. A. (2012). Proceso de transformación de las concepciones del Profesorado sobre la resolución de Problemas matemáticos. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 30(3), 71-88.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Situación de Aprendizaje (SdA): IA para un mundo mejor. Pensamiento computacional, Scratch y Learning ML. #REA con eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada quiero compartir una Situación de Aprendizaje (SdA) que elaboré hace casi dos años con la magnífica herramienta eXeLearning, para iniciar al alumnado en el uso de la IA, a través del Pensamiento Computacional, mostrando técnicas de Aprendizaje Automático, Machine Learning, haciendo uso de las herramientas Learning ML y Scratch.

SdA: IA para un mundo mejor

Mediante el trabajo en el aula con esta SdA pretendo introducir la Inteligencia Artificial (IA) y el Machine Learning (ML) al alumnado de ESO y Bachillerato. La misma presenta un enfoque práctico y guiado, paso a paso, facilitando la comprensión de conceptos complejos a través de ejemplos concretos, comprensibles por todos los alumnos, y el uso de herramientas visuales como Scratch y Learning ML. La inclusión de instrumentos de evaluación como las rúbricas presentes en el REA tienen la finalidad tiene la intención de ayudar a estimar de alguna manera, medir, el aprendizaje de los alumnos y asegurar un proceso educativo efectivo.

Se recomienda analizar con mayor profundidad todos el contenido del REA; enlaces a videos, así como explorar a fondo la SdA para obtener una visión más completa.

Quisiera destacar que el uso de la inteligencia artificial (IA), específicamente el Aprendizaje Automático (Machine Learning o ML) en Educación, a edades tempranas es posible a software educativo gratuitos; Scratch y la herramienta Learning ML.

Temas principales

  • Introducción a la programación con Scratch: Se destaca a Scratch como una herramienta ideal para iniciar a cualquier persona en la programación. Se mencionan sus características principales: lenguaje visual por bloques, comunidad online para compartir proyectos, fomento del pensamiento creativo y el trabajo colaborativo. 
  • Bloques de programación en Scratch: Se describe la función de los diferentes bloques de código en Scratch: Movimiento, Apariencia, Sonido, Control y Sensores. Se ejemplifica su uso para controlar objetos, crear animaciones, interactuar con el usuario y más. 
  • La importancia de los algoritmos: Se define un algoritmo como un conjunto de instrucciones ordenadas para obtener un resultado específico. Se menciona al matemático persa Al-Juarismi como el origen del término «algoritmo». 
  • Creación de modelos de IA con Learning ML: Se explica el proceso de generar un modelo de clasificación de datos en Learning ML, haciendo hincapié en la importancia de la cantidad y calidad de los datos. 
  • Aplicaciones prácticas de LearningML, en Matemáticas y en Biología (STEM): Se presentan dos ejemplos concretos de cómo usar Learning ML para:
  1. Predecir el cuadrante de un punto dadas sus coordenadas: Se describe el proceso de entrenar un modelo con datos de coordenadas y su cuadrante correspondiente, para luego probar su capacidad de predicción con nuevas coordenadas. 
  2. Clasificar flores Iris según sus características: Se detalla el uso de un conjunto de datos famoso sobre flores Iris para entrenar un modelo que clasifique nuevas flores en base a la longitud y anchura de sus sépalos y pétalos. 
  • Evaluación del aprendizaje: Se propone una rúbrica para evaluar el aprendizaje de los estudiantes en proyectos de IA, abarcando aspectos como la comprensión de la función de la IA, la importancia de los datos y la capacidad de desarrollar y programar una IA. 

Otros aspectos importantes del REA

  • La importancia del orden en la programación: Un algoritmo implica la realización de una instrucciones ordenadas.
  • El aprendizaje automático como reconocimiento de patrones: A partir de los datos introducidos, busca patrones entre ellos.
  • La potencia de la IA para predecir y clasificar: En los ejemplos se muestra la potencia de las herramientas sobre cómo son capaces de aprender y de obtener los patrones que les permite predecir.
  • El valor educativo de experimentar con datos erróneos: «Puede haber datos que sean erróneos, que estén contaminados. Pues ahí es donde realmente estaría la potencia didáctica y el trabajo en el aula con el alumnado».

Enlace al Recurso Educativo Abierto (REA) con la Situación de Aprendizaje (SdA)

https://luismiglesias.es/iaparaunmundomejor/SA/index.html 

Playlist en Youtube: Uso didáctico de la IA

Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Presentación usada en las Jornadas de Impulso del Razonamiento Matemático en Andalucía

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pasado martes 29 de octubre, en el Salón de Actos de la Facultad de Derecho de la Universidad de Málaga, y el lunes 4 de noviembre, en el Salón de Actos del Rectorado de la Universidad de Córdoba, se se han celebrado sendas jornadas para el profesorado de Andalucía Oriental y Andalucía Occidental.

Estas jornadas, impulsadas por la Dirección General de Innovación Educativa y Formación del Profesorado, y organizadas por los CEP de Málaga y de Córdoba han versado sobre las Instrucciones de Razonamiento Matemático (18 junio 2024),  con presentación institucional a cargo del DG de Innovación y Formación del Profesorado,  D. Francisco Javier Franco Fernández, y han constado de ponencias para las distintas etapas y mesas redondas.

En total han asistido más de 800 docentes de todas las provincias andaluzas, profesores y profesoras que imparten matemáticas en las distintas etapas educativas; Infantil, Primaria, Secundaria y Bachillerato. 

He tenido el gusto de participar en la mesa redonda moderada por D. Agustín Carrillo de Albornoz, SAEM Thales y Secretario General de la FESPM, junto a mis compañeros D.ª Belén Sepúlveda, D. Juan Antonio Reyes y D. Guillermo Cotrino.

Estoy encantando de que se potencie el razonamiento matemático y la resolución de problemas en Andalucía, muy feliz por el impulso de la Consejería de Desarrollo Educativo y la Formación Profesional con estas jornadas así como con el resto de actuaciones que desarrollarán las Instrucciones y agradecido por participar en las mismas aportando mi granito de arena.

Os comparto el material en el que he apoyado mi intervención por si fuera de utilidad, tanto para los docentes que han participado en las Jornadas, como para aquellos compañeros y compañeras que no han podido asistir.

Enlace a la presentación

Tweets de las Jornadas de los CEP de Málaga y Córdoba

Vídeos de la Jornadas de Córdoba y Málaga

Imágenes de ambas Jornadas

El pase de diapositivas requiere JavaScript.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Factorización de expresiones algebraicas cuadráticas usando azulejos algebraicos con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto este applet interactivo realizado con Geogebra. Se trata de un manipulativo virtual de mucha utilidad para facilitar la comprensión de nuestros alumnos sobre el proceso de factorización de polinomios cuadráticos (trinomios del tipo ax^2+bx+c) de manera visual, gracias a esta excelente y clara representación.

Sencillo de usar, basta arrastrar el deslizador, además de permitir generar múltiples actividades de manera aleatoria pulsando en el botón OTRO POLINOMIO.

Con un diseño limpio y claro, permite colocarlo a pantalla completa pulsando el cuadrado con borde discontinuo ubicado en la esquina inferior derecha.

Factorización de expresiones algebraicas cuadráticas usando azulejos algebraicos (fichas algebraicas)

Enlace a la actividad en geogebra.org

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Resolución de problemas y razonamiento matemático. Ejercicios vs. Problemas en Matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El nuevo currículo de Matemáticas de la LOMLOE, tiene como líneas principales en la definición de las competencias específicas de matemáticas: la resolución de problemas y las destrezas socioafectivas.

En la introducción de la materia se recoge literalmente:

La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.

Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.

En este nuevo paradigma curricular se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como buenos resolutores de problemas, así como aquellos alumnos que presentan dificultades a la hora para resolver problemas matemáticos.

Infografía. Presentación interactiva. Ejercicios vs. Problemas

Mostrar presentación: Ejercicios vs. Problemas · MatemáTICas: 1,1,2,3,5,8,13,…

Enlaces de interés

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Material del Taller: «Integración de GeoGebra y Phyton: PyGgb» en el V Día Nacional Geogebra · FESPM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los pasados días 4 y 5 de octubre tuvo lugar en la Facultad de Educación del Campus de Cuenca de la Universidad de Castilla La Mancha, el V Día Nacional Geogebra, organizado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), con el apoyo de distintas administraciones.

Fueron dos días intensos de aprendizaje y compartiendo con colegas de todo el territorio nacional en torno a la mejora de la Educación Matemática con ayuda de esta potente herramienta digital y los excelentes recursos digitales compartidos por la comunidad docente mundial. 

Libro Geogebra. Material del Taller sobre PyGgb

 
PyGgb es una herramienta aún en estado embrionario, pero con una potencialidad didáctica increíble, como pudimos ver durante el desarrollo del taller y se puede comprobar en el libro Geogebra que elaboré expresamente para el mismo el cual os comparto a continuación:
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-5
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-1
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-2
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-3
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-4

INTEGRACIÓN DE GEOGEBRA Y PYTHON: PYGGB. EXPLORANDO NUEVAS FRONTERAS EN LA ENSEÑANZA Y EN EL APRENDIZAJE DE LAS MATEMÁTICAS
Luis Miguel Iglesias Albarrán
luismiglesias@gmail.com · https://luismiglesias.es
IES San Antonio (Bollullos Par del Condado – Huelva) · España

Nivel educativo: Educación Secundaria Obligatoria y Bachillerato

Palabras clave: GeoGebra, Python, Pensamiento Computacional, Competencias Específicas

Resumen
En el marco del V Día GeoGebra en España, presentamos PyGgb, una poderosa combinación de GeoGebra y Python que abre nuevas posibilidades para la Enseñanza y para el Aprendizaje de las Matemáticas. GeoGebra es una herramienta ampliamente utilizada por la comunidad educativa matemática, y de otras disciplinas, a nivel mundial, para visualizar y apoyar las explicaciones facilitando la comprensión e interpretación de los conceptos matemáticos, modelizar fenómenos y situaciones de la vida real,… Por otra parte, Python es un lenguaje de programación versátil y popular en la ciencia de datos y la automatización. La herramienta PyGgb es un puente que conecta estas dos potentes herramientas, permitiendo a los usuarios, en nuestro caso profesores y alumnos, aprovechar lo mejor de ambos mundos.

Libro Geogebra: https://www.geogebra.org/m/mzzmnwus

Fotos de momentos del evento y con amigos

Taller_PyGgb_V_DNG_luismiglesias
T3 V DNG - TALLER PYTHON-GEOGEBRA-PYGGB-LUIS MIGUEL IGLESIAS ALBARRÁN-5
« de 4 »

Las palabras de mi amigo Juan Martínez-Tébar Giménez, merecen mención especial: «De Huelva me encantan las gambas 🦐, el jamón 🐖 y Luismi 🧑‍💻» 🤗.

 
 
En resumidas cuentas, regresé con la mochila 🎒 cargada de aprendizajes, libros y buenos momentos de convivencia con los colegas de las sociedades de profesores de matemáticas del país.

Enlaces de interés

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Taller: «Integración de GeoGebra y Phyton: PyGgb» en el V Día Nacional Geogebra · FESPM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los próximos días 4 y 5 de octubre tendrá lugar en Cuenca el V Día Nacional Geogebra, organizado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), con el apoyo de distintas administraciones. Serán dos días intensos compartiendo con colegas de todo el territorio nacional en torno a esta potente y versátil herramienta, fundamental para el desarrollo de los procesos de Enseñanza-Aprendizaje en las aulas de todo el mundo.

Además compartir buenos ratos de tertulia matemática con los compañeros, aprender en sus talleres y conferencias, tendré la oportunidad de impartir un taller, en la mañana del sábado día 5, sobre PyGGb =  Python + Geogebra

INTEGRACIÓN DE GEOGEBRA Y PYTHON: PYGGB. EXPLORANDO NUEVAS FRONTERAS EN LA ENSEÑANZA Y EN EL APRENDIZAJE DE LAS MATEMÁTICAS
Luis Miguel Iglesias Albarrán
luismiglesias@gmail.com · https://luismiglesias.es
IES San Antonio (Bollullos Par del Condado – Huelva) · España

Nivel educativo: Educación Secundaria Obligatoria y Bachillerato

Palabras clave: GeoGebra, Python, Pensamiento Computacional, Competencias Específicas

Resumen
En el marco del V Día GeoGebra en España, presentamos PyGgb, una poderosa combinación de GeoGebra y Python que abre nuevas posibilidades para la Enseñanza y para el Aprendizaje de las Matemáticas. GeoGebra es una herramienta ampliamente utilizada por la comunidad educativa matemática, y de otras disciplinas, a nivel mundial, para visualizar y apoyar las explicaciones facilitando la comprensión e interpretación de los conceptos matemáticos, modelizar fenómenos y situaciones de la vida real,… Por otra parte, Python es un lenguaje de programación versátil y popular en la ciencia de datos y la automatización. La herramienta PyGgb es un puente que conecta estas dos potentes herramientas, permitiendo a los usuarios, en nuestro caso profesores y alumnos, aprovechar lo mejor de ambos mundos.

ENTRADA SOBRE PyGgb EN MATEMÁTICAS: 1,1,2,3,5,8,13,…

 

 

INFORMACIÓN DE LA FESPM SOBRE LOS DÍAS GEOGEBRA

Durante los últimos años se han venido celebrando distintas actividades de formación que tenían como tema de trabajo el uso de este software con fines didácticos, para dar a conocer las posibilidades que a lo largo de sus sucesivas versiones ha ido incorporando.

En particular han sido numerosas las actividades realizadas en torno al programa GeoGebra, tanto en cada Comunidad Autónoma como de carácter más general, entre las que cabe mencionar el Día GeoGebra Iberoamericano celebrado en Madrid en 2017, el I Congreso Internacional GeoGebra de Córdoba, en 2023, o el último Día GeoGebra estatal celebrado en Albacete en 2018.

Desde la FESPM consideramos que es el momento de retomar esta última actividad, aprovechando el éxito del pasado I Congreso internacional, que tendrá continuidad en 2025 con una nueva edición, que en este caso se celebrará en Portugal.

La convocatoria de un Día GeoGebra con carácter estatal servirá para retomar la coordinación entre los distintos Institutos de GeoGebra creados en las distintas comunidades autónomas, con el objetivo de aunar esfuerzos para lograr que se siga trabajando para generalizar el uso de este software como recurso en el aula, de manera que se puedan aprovechar las posibilidades didácticas que ofrece para promover un cambio metodológico en la enseñanza de las matemáticas en los diferentes niveles educativos, desde Educación Infantil hasta Universidad.

Con estos objetivos se propone la celebración de una nueva edición estatal del Día GeoGebra, que tendrá lugar en Cuenca, durante los días 4 y 5 de octubre de 2024.

Enlace a web FESPM: Descarga la convocatoria aquí

Enlace a web FESPM: Descarga el programa aquí

 
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Explorando la magia de GeoGebra y Python: PyGgb. Visualizaciones matemáticas interactivas para el aula

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En el proceso de aprendizaje de las matemáticas, la visualización y la interacción son clave para entender conceptos complejos. Asimismo facilita sobremanera la labor docente, como apoyo a las explicaciones. En los últimos meses, he estado disfrutando muchísimo de la combinación de dos herramientas poderosas: GeoGebra y Python. Juntas no solo nos permiten crear construcciones geométricas dinámicas y precisas, sino que también nos abren la puerta a explorar las matemáticas de forma más creativa e interactiva.
 

GeoGebra + Python: PyGgb

GeoGebra es ya una herramienta esencial en nuestras clases de matemáticas, conocida por su capacidad para modelar y explorar conceptos de forma visual. Pero al combinarla con Python, un lenguaje de programación accesible y potente, las posibilidades se multiplican. Esta combinación nos permite automatizar procesos, crear animaciones complejas y generar visualizaciones que de otra manera serían más difíciles de elaborar.

Fuente: @GeoGebra en X

Acceso al entorno de programación PyGgb

Basta introducir la url: https://geogebra.org/python/index.html y dar rienda suelta a tu imaginación. 

Tablero de ajedrez

8 aplicaciones prácticas para el aula

A continuación, os comparto algunos de los proyectos que he desarrollado y que he publicado en mi canal de YouTube. Cada uno de estos vídeos muestra cómo podemos usar esta combinación para crear visualizaciones matemáticas interactivas y atractivas que pueden llevar nuestras clases a otro nivel:

  • 1. Serie de polígonos regulares con GeoGebra + Python
    En este vídeo, exploro cómo generar una serie de polígonos regulares utilizando GeoGebra y Python. Es una forma excelente de mostrar la simetría y las propiedades geométricas de estos polígonos de manera visual y dinámica.

  • 2. Diseños geométricos variados con GeoGebra + Python
    Aquí podéis ver cómo usamos GeoGebra y Python para crear diseños geométricos variados y estéticamente atractivos. Es una oportunidad fantástica para que los alumnos vean cómo las matemáticas también pueden ser arte.

  • 3. Cicloide con GeoGebra + Python
    En este vídeo, construyo una cicloide, una curva generada por un punto en el borde de un círculo que rueda a lo largo de una línea recta. Es una aplicación perfecta para enseñar sobre curvas y sus propiedades tanto en cinemática como en geometría (sentido de la medida y espacial).

  • 4. Representación de rectas y tabla de valores: Ecuación explícita y=mx+n con GeoGebra + Python
    Este proyecto es ideal para mostrar la relación entre la ecuación de una recta y su representación gráfica, resaltando la importancia de las conexiones intramatemáticas, viendo el saber matemático como un todo integrado. Además, se genera automáticamente una tabla de valores, lo que facilita la comprensión de la pendiente y la intersección.

  • 5. Diseños geométricos variados: Cuadrados marchosos con GeoGebra + Python
    Aquí presento un diseño geométrico dinámico donde los cuadrados parecen «bailar» al ritmo de la programación. Es un recurso genial para captar la atención de los estudiantes y mostrar la belleza de la geometría dinámica. Un ejemplo claro del enfoque STEAM en el aula de Matemáticas

  • 6. Parábola y arte reglado con GeoGebra + Python
    Este vídeo explora cómo construir una parábola y cómo esta se puede utilizar para crear patrones geométricos atractivos. Es una excelente manera de conectar conceptos algebraicos con aplicaciones geométricas.

  • 7. Teselación hexagonal: Panal de abejas con GeoGebra + Python
    En este proyecto, exploro la teselación hexagonal, mostrando cómo se forma un panal de abejas. Es una forma perfecta de introducir a los estudiantes en conceptos de simetría, teselación y sus aplicaciones en la naturaleza.

  • 8. Diseños geométricos: Rotación de segmentos con GeoGebra + Python
    Finalmente, en este vídeo muestro cómo la rotación de segmentos puede generar patrones geométricos interesantes. Es ideal para discutir temas como la rotación y la simetría en el aula.

Ventajas pedagógicas

Incorporar Python en el uso de GeoGebra no solo añade una capa técnica interesante, sino que también introduce a los alumnos a la programación de una manera intuitiva y orientada a resultados, artefactos digitales concretos que pueden ser perfectamente el producto final de Situaciones de Aprendizaje competenciales. Esto no solo refuerza sus habilidades matemáticas, sino que también desarrolla competencias digitales que son cada vez más necesarias en el mundo actual.

 

Os animo a que veáis los vídeos que he compartido y que consideréis cómo estas herramientas podrían integrarse en vuestras clases. La combinación de GeoGebra y Python tiene el potencial de transformar la enseñanza de las matemáticas, haciendo que conceptos abstractos sean más tangibles y atractivos para los estudiantes.

Seguiré explorando nuevas formas de aprovechar esta potente combinación y compartiendo mis descubrimientos. ¡No os perdáis las próximas publicaciones y, como siempre, estaré encantado de conocer vuestras experiencias y comentarios!

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas con herramientas digitales. Problema geométrico: dos cuadrados y un rectángulo, con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Navegando por la red me topé con este bonito problema:

«Dos cuadrados y un rectángulo. ¿Cuánto vale el área del rectángulo?»

Tras analizarlo con detalle y resolverlo usando un poco de trigonometría me di cuenta que era bastante más rico de lo que aparentaba y que escondía un bonito invariante geométrico relacionado con él área del cuadrado inicial, independientemente de cuales fueran las áreas de los cuadrados adyacentes dibujados. 

Y, en efecto, con ayuda de este magnífico software de geometría dinámica, Geogebra, pude certificar que era cierta mi observación. 

Es por ello por lo que he pensado que tal vez sería de utilidad para otros compañeros docentes que quieran trabajarlo en el aula. 

Bien como problema aislado, para analizar en detalle y promover un escenario de conjeturas (razonamiento y prueba), para seguir el protocolo de construcción y que los alumnos realicen construcciones del problema con diferentes tamaños, compartan sus resultados y conjeturen,…

Applet interactivo en Geogebra.org

Applet interactivo en Geogebra.org

Pulsa para colocar a pantalla completa (esquina inferior derecha) y pulsa el botón de reproducir (play)

 

Vídeo con explicación del problema e interacción con el applet

 

Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula. 

Saludos y feliz domingo 😉

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com